
Coupled thermogravimetric-IR techniques and kinetic analysis
by non-isothermal decomposition of Cd2+ and Co2+ vinyl-
phosphonates

T. Vlase Æ Gabriela Vlase Æ N. Doca Æ
G. Ilia Æ Adriana Fulias

ICTAC2008 Conference

� Akadémiai Kiadó, Budapest, Hungary 2009

Abstract The thermal behavior of Cd2? and Co2? vinyl-

phosphonates was studied using two different experimental

strategies: the coupled TG–EGA (FTIR) technique by

decomposition in nitrogen, respectively, air, and the kinetic

analysis of TG data obtained in dynamic air atmosphere at

four heating rates. The both compounds exhibited a good

thermal stability: in nitrogen, only an endothermic dehy-

dration step was observed. In air the Cd2? salt presents the

same dehydration step whereas by the Co2? salt two

simultaneous processes take place dehydration, respec-

tively, thermooxidative destruction of the vinyl group. The

kinetic analysis of the TG data was performed with the

Flynn–Wall–Ozawa, Friedman’s, and modified non-para-

metric kinetic methods. By means of the coupled tech-

niques, some spectroscopic arguments on the reaction

mechanism were obtained. The values of the activation

energy by the three methods are in good agreement and

support the two different suggested mechanism.

Keywords Coupled TG–EGA � Non-isothermal kinetics �
Vinyl-phosphonates

Introduction

The salts of vinyl-phosphonic acid (I) are important as

intermediates due to their bifunctionality: the double bond is

able to polymerization, respectively, the ionic (P–O-)2Me2?

bond is of interest for ion exchangers, non-linear optical

material and/or photochemically active materials [1].
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The possible structures by polymerization are of a wide

variety: one-dimensional chains [2–4] layered structures

[5–7] and three-dimensional micro-porous frameworks

[8, 9].

The aim of the present work is to perform a study on the

thermal behavior of two vinyl-phosphonates (I): of Cd2?

and Co2?. This work folow our recent paper on the thermal

behavior of some phenyl-vinyl-phosphonates [10].

The thermal behaviour was studied using a coupled

thermogravimetric–evolved gas analysis (TG/EGA) fol-

lowed by a kinetic analysis of the non-isothermal data.

Experimental

Synthesis

A solution of vinyl-phosphonic acid:metal nitrates:urea:-

water in a molar ratio of 1:1:1:250 was prepared, the pH

was adjusted at 2.8 with a 0.1 M solution of NaOH and

then heated 72 h at 70 �C. The resulted crystals of the
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corresponding salts were filtered and dried in air. Data of

the structure of these compounds were recent reported [11].

Thermal analysis

The thermoanalytical curves TG, DTG and Heat Flow were

obtained on a Perkin-Elmer Diamond device, using Al

crucibles. The experiments were performed in dynamic

atmosphere (100 cm3 min-1) of nitrogen, respectively, air,

at heating rates of 10, 12, 15 and 20 �C min-1.

FTIR spectra

The FTIR Spectra were drawn up with a Perkin-Elmer

Spectrum 100 device. For the solid samples, i.e., before and

after the thermal treatment, the U-ATR technique was

used. For the EGA, the corresponding gas cell of the

Spectrum 100 was coupled to the thermobalance gas exit

by means of a Transfer Line. Both the gas cell and transfer

line were heated at 250 �C, in order to avoid condensation

as far as possible. The evolved gases were identified using

a Gas Vapour Library (Sadtler Spectral Databases).

Results and discussions

The thermoanalytical curves of the studied compounds,

obtained in nitrogen and air, respectively, are presented in

Fig. 1 and 2. Apparently the thermal behavior was the same

for the both compounds, in nitrogen as well as in air, i.e., one

endothermic mass loss process in the range 150–250 �C.

In fact the thermal behavior is different, first of all due to

the reaction atmosphere: in nitrogen it is possible only a

thermodegradation (thermally induced destruction of the

molecular architecture), whereas in air the thermooxidative

processes would be preferred. The arguments are furnished

by EGA.

Indeed, in nitrogen, the evolved compounds is water

(see an example in Fig. 3). A supplementary argument is

brought by the FTIR spectra of the sample before and after

the thermal treatment in nitrogen. As it is clearly evidenced

in Fig. 4, after the thermal treatment until 300, respec-

tively, 550 �C, the peaks at 3400–3500 cm-1, corre-

sponding to the crystallization water, are completely

disappeared. In the same Fig. 4, it is an evidence on the

thermal stability in nitrogen at 300 �C of the dehydrated

salts, i.e., the maintenance of the peaks for C=C

(1620 cm-1) and P=O (1,100, 960, respectively,

750 cm-1).

The molecular content of this crystallization water was

determined with the formula:

x ¼ M � a
18ð1� aÞ ð1Þ

where M is the molecular mass of the salts without water,

a—the relative mass loss (a = Dm/mo), and x—no. of

water molecules/phosphonate molecule. The corresponding

data are systematized in Table 1 and it is obvious that the

both studied salts are monohydrate.

By decomposition in air, the behavior of these two salts

are different:

– the cadmium salt exhibit in air a similar behavior like

in nitrogen (compare Fig. 2a, b); the EGA indicate

water vapour as the only evolved gas and the mass loss

of 7.6% correspond, according to Eq. 1, to one water

molecule/phosphonate molecule

– the cobalt salt has apparently a similar curve in air like

in nitrogen, but the EGA indicate a mixture of water
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Fig. 1 The thermoanalytical curves at a heating rate of 20 �C min-1 of the cobalt salt
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vapor and carbon dioxide as evolved gases and the

mass loss exceed 30%; this is probably due to a

catalytic effect of Co2? which in parallel with the

dehydration process, favour the thermooxidative deg-

radation of the organic part into CO2 and H2O,

simultaneously with the formation of phosphite. More

informations about the differences observed by the

decomposition in air are expected from the kinetic

analysis.

Kinetic analysis

The strategy of the kinetic analysis is based on processing

the TG/EGA data obtained in air by means of three dif-

ferent isoconversional methods.

(i) The method by Flynn–Wall [12] and Ozawa [13] is an

integral method based on the equation:

ln b ¼ ln
A

R � gðaÞ � 1:052
E

RT
� 5:331 ð2Þ
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Fig. 2 The thermoanalytical curves at a heating rate of 20 �C min-1 of the cadmium salt
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Fig. 3 The evolved gas spectrum corresponding to the TG curve of Cd2? salt in nitrogen, at 230 �C (11.5 min). For comparison also the FTIR

spectrum of water vapor is added
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where a is the degree of conversion, b—the heating

rate and

gðaÞ ¼
Za

a0

f ðaÞ � da ð3Þ

is the conversion integral. Being an integral method,

the determined value of the activation energy E is in

connection with the ‘‘history’’ of the sample. If the

variation of E versus a is not significant (see and

example in Fig. 5), the mean value of E can be used

for the kinetic characterization of the thermal

behavior.

(ii) The differential method by Friedman [14] is based on

the equation

lnðb � da
dT
Þa ¼ ln A � f ðaÞ½ � � E

R � T ð4Þ

This method is more sensitive in respect of the E

versus a dependence and is very useful for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
αi

degree of conversion
αi

degree of conversion

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.105

9.104
(b)(a)

8.104

7.104

6.104

5.104

4.104

3.104

2.104

1.104

0

8.104

6.104

4.104

E
i
-S1

i

E
i
+S1

i

E
i

E
i
-S1

i

E
i
+S1

i

E
i

A
ct

iv
at

io
n 

en
er

gy
 (

J/
m

ol
) 

w
ith

 e
rr

or
s 

ba
rr

s

A
ct

iv
at

io
n 

en
er

gy
 (

J/
m

ol
) 

w
ith

 e
rr

or
s 

ba
rr

s

Fig. 5 The dependence of E versus a, according to FWO method, for a Co2? and b Cd2? salt in air
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Fig. 4 The FTIR spectra by U-ATR technique of Cd2? salt

Table 1 The dehydration step in nitrogen (in connection with Eq. 1)

Phosphonate of M (molecular

mass)

a (relative

mass loss)

x (no. of water

molecules)

Cd 218 0.077 1.01

Co 165 0.100 1.02
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discrimination between a single step or a complex

process. According to Fig. 6, by Cd salt it is cer-

tainly such a process.

(iii) The non-parametric kinetic method [15] is based on

the assumption that the reaction rate can be

expressed as a product of two independent functions

f(T) and g(a), so that a square matrix M can be

defined, with the element Mij = f(Tj) � g(ai).

By multi-step processes, for example by two simul-

taneous processes with the reaction rates of r1 and r2,

the observed reaction rate is.

r ¼ r1 þ r2 ¼ f1 Tð Þ � g1ðaÞ þ f2ðTÞ � g2ðaÞ ð5Þ

and the initial matrix will be decomposed in

M ¼ M1 þM2 ð6Þ

The contribution of each step is expressed by the

explained variance ki, so that
P

ki ¼ 100%:

This matrix model allows the decomposition of M

by the Singular Value Decomposition algorithm

[16].

M ¼ Uðdiag � sÞVT ð7Þ

The vector u1, i.e., the first column of U, is analyzed

in order to establish the conversion function; we

suggest the Šestak–Berggren equation [17]:

g að Þ ¼ am 1� að Þn ð8Þ

where m and n take into consideration physical,

respectively, chemical phenomenon.

A similar vector v1, corresponding to V, is checked

for an Arrhenius type temperature phenomenon.

(iv) The results by these three methods are presented in

Table 2.

By inspecting the data in Table 2, a very good agree-

ment between the values of E by FWO, respectively, FR

method was observed, especially by the cadmium salts.

Regarding the NPK method, the following observations

are noticeable:

– for reasons of significance, only the step with k = 10%

will be considered; so the behavior of the two samples
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Fig. 6 The dependence of E versus a, according to Friedman method, for a Co2? and b Cd2? salt in air

Table 2 Comparative data of the kinetic analysis

Phosphonate of Main value of E (kJ mol-1) NPK method

Flynn–Wall–Ozawa Friedman E (kJ mol-1) A (min-1) m n k Ē =
P

kE

Cd2? 46.8 ± 16.1 47.8 ± 14.4 48.9 ± 4.6 7.34 9 104 3/2 1 91.2 49.6

57.4 ± 22.3 1.07 9 106 1 3/2 8.8

Co2? 67.9 ± 20.4 62.6 ± 5.3 68.0 ± 14.3 1.07 9 107 3/2 1 71.5 68.1

71.5 ± 11 4.78 9 107 0 1/5 27.2
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seems to be different: by cadmium salt, one step

process, whereas by cobalt salt, a two step process;

– the values of E by the first step are also in a very good

agreement with the main values by FWO and FR

methods;

– the conversion dependence of the first step by both salts

is described by the same equation, with m = 3/2 and

n = 1 (see Eq. 7)

– the main value of E by NPK method, i.e. Ē =
P

ki � Ei,

is practically the same with the main value of E by

FWO method, and this last one is in connection with

the thermal ‘‘history’’ of the sample.

By corroborating the data of the kinetic analysis with the

TG–EGA data we suggest a thermodegradation of the

cadmium phosphonate monohydrate due to a single step

dehydration, whereas the thermodegradation of the corre-

sponding cobalt salt is due to a simultaneously two step

process: a dehydration and a redox destruction of the

organic part with the formation of phosphite.

Conclusions

The data on thermal behavior of cadmium and cobalt

phosphonate were obtained using a coupled TG/EGA

technique and an adequate kinetic analysis.

Both salts are monohydrate and in dynamic nitrogen

atmosphere the dehydration is the only thermal event until

300 �C. In dynamic air atmosphere the behavior of these

two salts is different: by the cadmium salt the dehydration

is the remarkable thermal event, whereas by the cobalt salt

beside the dehydration, a parallel thermooxidative degra-

dation of the vinyl radical take place.

A good agreement of the activation energy values are

obtained by three different isoconversional methods used

for the TG/DTG data processing.

Supplementary the NPK method allows a discrimination

between two and more steps of a complex process and a

less speculative separation of the temperature respective

conversion influence on the reaction rate.

Only a strategy of kinetic analysis using at least three

different methods is able to characterize the thermal

behavior in a less speculative manner.
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